Powrót do listy wiadomości
Dodano: 2010-09-16 | Ostatnia aktualizacja: 2010-09-16
Innowacyjny polski defektoskop
Zespół polskich naukowców kierowany przez dr. Sławomira Wronkę z Instytutu Problemów Jądrowych w Świerku, stworzył innowacyjny defektoskop – detektor do prześwietlania obiektów przemysłowych. Urządzenie potrafi w porę ostrzec o niebezpieczeństwie awarii rur, spawów i odlewów, a przy tym jest odporne na promieniowanie. Detektor zaprezentowano niedawno na Krajowej Konferencji Badań Radiograficznych w Popowie. O wydarzeniu informuje PAP w serwisie Nauka w Polsce.
Metalowe fragmenty konstrukcji mostów, statków, samolotów, budynków, fabrycznych instalacji i maszyn prześwietla się silnym promieniowaniem X w celu potwierdzenia, że dany element jest wykonany prawidłowo i można bezpiecznie użyć go do budowy całych konstrukcji. Takie prześwietlenie, podobne do lekarskiego badania rentgenowskiego, pokazuje np. słabe punkty w spawie lub odlewie. Powszechnie dostępne detektory elektroniczne, używane do wykonywania takich prześwietleń, poddawane są owemu silnemu promieniowaniu, które z czasem uszkadza je i sprawia, że odczyt przestaje być precyzyjny. Dr Wronka zapewnia, że detektor opracowany przez jego zespół jest na takie promieniowanie odporny. Wyjaśnia, że podobnie jak w wielu innych przypadkach, matką tego wynalazku była potrzeba.
"W naszym instytucie często wykorzystujemy promieniowanie o wysokim natężeniu. Szukaliśmy detektora, który mógłby działać niezawodnie mimo ekspozycji na wysokie dawki promieniowania. Nie znaleźliśmy, więc postanowiliśmy zbudować go sami" - mówi fizyk. Na razie nie przeprowadzono dokładnych badań pokazujących, o ile wytrzymalsze i trwalsze będzie nowe urządzenie niż te obecnie stosowane w przemyśle. "Biorąc pod uwagę materiały, które wykorzystaliśmy do budowy, wiemy, że tam nic nie może się zepsuć pod wpływem promieniowania. Ale specyfikacje będę mógł podać dopiero po przeprowadzeniu wszystkich testów" - zastrzega Wronka.
Różnica w budowie tradycyjnych detektorów i nowego wynalazku polega w uproszczeniu na zastosowaniu innego sposobu przetwarzania promieniowania na prąd elektryczny, czyli na czytelny dla komputera sygnał, na podstawie którego kreowany jest finalny obraz prześwietlanego przedmiotu.
"Nowoczesne detektory obrazujące bezpośrednio w czasie rzeczywistym dają rewelacyjne wyniki w postaci obrazów wysokiej rozdzielczości. Jednak wysokie dawki promieniowania powodują ich stopniową degradację. Nasz detektor nie ma żadnej elektroniki w strukturze odczytu, czyli w polu promieniowania. Elektronika oczywiście gdzieś tam musi być i jest, ale jeśli jedna płytka się przepali, można ją wymienić na nową, nie burząc struktury całego urządzenia" - tłumaczy naukowiec.
W projektowaniu została wykorzystana technologia opracowana dla dużych eksperymentów fizycznych w laboratoriach Europejskiej Organizacji Badań Jądrowych CERN. Finansowo w stworzenie wynalazku zaangażowała się wrocławska firma Techtra, zajmująca się m.in. transferem technologii z instytucji naukowych do przemysłu.
(bj)
Metalowe fragmenty konstrukcji mostów, statków, samolotów, budynków, fabrycznych instalacji i maszyn prześwietla się silnym promieniowaniem X w celu potwierdzenia, że dany element jest wykonany prawidłowo i można bezpiecznie użyć go do budowy całych konstrukcji. Takie prześwietlenie, podobne do lekarskiego badania rentgenowskiego, pokazuje np. słabe punkty w spawie lub odlewie. Powszechnie dostępne detektory elektroniczne, używane do wykonywania takich prześwietleń, poddawane są owemu silnemu promieniowaniu, które z czasem uszkadza je i sprawia, że odczyt przestaje być precyzyjny. Dr Wronka zapewnia, że detektor opracowany przez jego zespół jest na takie promieniowanie odporny. Wyjaśnia, że podobnie jak w wielu innych przypadkach, matką tego wynalazku była potrzeba.
"W naszym instytucie często wykorzystujemy promieniowanie o wysokim natężeniu. Szukaliśmy detektora, który mógłby działać niezawodnie mimo ekspozycji na wysokie dawki promieniowania. Nie znaleźliśmy, więc postanowiliśmy zbudować go sami" - mówi fizyk. Na razie nie przeprowadzono dokładnych badań pokazujących, o ile wytrzymalsze i trwalsze będzie nowe urządzenie niż te obecnie stosowane w przemyśle. "Biorąc pod uwagę materiały, które wykorzystaliśmy do budowy, wiemy, że tam nic nie może się zepsuć pod wpływem promieniowania. Ale specyfikacje będę mógł podać dopiero po przeprowadzeniu wszystkich testów" - zastrzega Wronka.
Różnica w budowie tradycyjnych detektorów i nowego wynalazku polega w uproszczeniu na zastosowaniu innego sposobu przetwarzania promieniowania na prąd elektryczny, czyli na czytelny dla komputera sygnał, na podstawie którego kreowany jest finalny obraz prześwietlanego przedmiotu.
"Nowoczesne detektory obrazujące bezpośrednio w czasie rzeczywistym dają rewelacyjne wyniki w postaci obrazów wysokiej rozdzielczości. Jednak wysokie dawki promieniowania powodują ich stopniową degradację. Nasz detektor nie ma żadnej elektroniki w strukturze odczytu, czyli w polu promieniowania. Elektronika oczywiście gdzieś tam musi być i jest, ale jeśli jedna płytka się przepali, można ją wymienić na nową, nie burząc struktury całego urządzenia" - tłumaczy naukowiec.
W projektowaniu została wykorzystana technologia opracowana dla dużych eksperymentów fizycznych w laboratoriach Europejskiej Organizacji Badań Jądrowych CERN. Finansowo w stworzenie wynalazku zaangażowała się wrocławska firma Techtra, zajmująca się m.in. transferem technologii z instytucji naukowych do przemysłu.
(bj)
Kategoria wiadomości:
Z życia branży
- Źródło:
- PAP Nauka w Polsce

Komentarze (0)
Czytaj także
-
Kluczowa rola wycinarek laserowych w obróbce metali
www.automatyka.plWycinarki laserowe zrewolucjonizowały przemysł obróbki metali, oferując niezwykłą precyzję i efektywność. Dowiedz się, dlaczego są one...
-
Nicemach - automatyczne giętarki do drutu, rur i sprężyn
Technologie Formowania Metali to firma, która od samego początku działalności stawia na sprawdzonych i doświadczonych producentów maszyn. Dzięki...
-
-
-
-